
Exercise 6.2.12 (Cantor Function) Review the construction of the Cantor set C ⊂ [0, 1]

from Section 3.1. This exercise makes use of results and notation from this discussion.

(a) Define f0(x) = x for all x ∈ [0, 1]. Now, let

f1(x) =


(3/2)x for 0 ≤ x ≤ 1/3

1/2 for 1/3 < x < 2/3

(3/2)x− 1/2 for 2/3 ≤ x ≤ 1.

Sketch f0 and f1 over [0, 1] and observe that f1 is continuous, increasing, and constant

on the middle third (1/3, 2/3) = [0, 1] \ C1.

(b) Construct f2 by imitating this process of flattening out the middle third of each

nonconstant segment of f1. Specifically, set

f2(x) =


(1/2)f1(3x) for 0 ≤ x ≤ 1/3

f1(x) for 1/3 < x < 2/3

(1/2)f1(3x− 2) + 1/2 for 2/3 ≤ x ≤ 1.

If we continue this process, show that the resulting sequence (fn) converges uniformly

on [0, 1].

(c) Let f = lim fn. Prove that f is a continuous, increasing function on [0, 1] with

f(0) = 0 and f(1) = 1 that satisfies f ′(x) = 0 for all x in the open set [0, 1] \ C.

Recall that the “length” of the Cantor set C is 0. Somehow f manages to increase

from 0 to 1 while remaining constant on a set of “length 1.”

Solution.
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lim fn = f

We observe that fn is constant on the open set [0, 1] \ Cn for all n ∈ N.
(b) We will prove, by induction, that

|fn(x)− fn−1(x)| ≤
1

2n

for x ∈ [0, 1] and n ∈ N. Notice that

|f1(x)− f0(x)| ≤
1

2
and |f2(x)− f1(x)| ≤

1

22

for all x ∈ [0, 1]. Assume, for some k ≥ 2, that

|fk(x)− fk−1(x)| ≤
1

2k
, x ∈ [0, 1].
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Now consider the expression |fk+1(x)−fk(x)|. We will apply the three-part piecewise

recursive definition of fn to prove the induction step.

Case 1: If 0 ≤ x ≤ 1/3, then

|fk+1(x)− fk(x)| = |(1/2)fk(3x)− (1/2)fk−1(3x)|

=
1

2
· |fk(3x)− fk−1(3x)|

≤ 1

2
· 1

2k
=

1

2k+1
.

Case 2: If 1/3 < x < 2/3, then

|fk+1(x)− fk(x)| = |fk(x)− fk−1(x)| = 0 <
1

2k+1
.

Case 3: If 2/3 ≤ x ≤ 1, then

|fk+1(x)− fk(x)| =
∣∣[(1/2)fk(3x− 2) + 1/2]− [(1/2)fk−1(3x− 2) + 1/2]

∣∣
=

1

2
· |fk(3x− 2)− fk−1(3x− 2)|

≤ 1

2
· 1

2k
=

1

2k+1

This proves, by induction, that

|fn(x)− fn−1(x)| ≤
1

2n
, x ∈ [0, 1],

for all n ∈ N.
Let 1 ≤ m < n. Then

|fm(x)− fn(x)|
= |(fm(x)− fm+1(x)) + (fm+1(x)− fm+2(x)) + · · ·+ (fn−1(x)− fn(x))|
≤ |fm(x)− fm+1(x)|+ |fm+1(x)− fm+2(x)|+ · · ·+ |fn−1(x)− fn(x)|

≤ 1

2m+1
+

1

2m+2
+ · · ·+ 1

2n

<
1

2m+1
+

1

2m+2
+

1

2m+3
+ · · · (geometric series)

=
1

2m
.

Now, let ϵ > 0 be given. Choose N ∈ N such that 1
2N

< ϵ. If n > m ≥ N , then by

the previous calculation we have

|fm(x)− fn(x)| <
1

2m
≤ 1

2N
< ϵ.

By Cauchy’s criterion for uniform convergence, the sequence (fn) of continuous func-

tions converges uniformly to a limit function f .

(c) Because each fn is continuous and (fn) → f uniformly, if follows that f is continuous.

Since fn(0) = 0 and fn(1) = 1 for all n, we have f(0) = 0 and f(1) = 1. Let

0 ≤ x < y ≤ 1. Since each fn is increasing, fn(x) ≤ fn(y). By the order limit
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theorem f(x) ≤ f(y), and so f is increasing. Since f is constant on each of open

intervals whose union form [0, 1] \ C, it follows at f ′(x) = 0 for x ∈ [0, 1] \ C. □


