Exercise 6.2.12 (Cantor Function) Review the construction of the Cantor set $C \subset[0,1]$ from Section 3.1. This exercise makes use of results and notation from this discussion.
(a) Define $f_{0}(x)=x$ for all $x \in[0,1]$. Now, let

$$
f_{1}(x)= \begin{cases}(3 / 2) x & \text { for } 0 \leq x \leq 1 / 3 \\ 1 / 2 & \text { for } 1 / 3<x<2 / 3 \\ (3 / 2) x-1 / 2 & \text { for } 2 / 3 \leq x \leq 1\end{cases}
$$

Sketch f_{0} and f_{1} over $[0,1]$ and observe that f_{1} is continuous, increasing, and constant on the middle third $(1 / 3,2 / 3)=[0,1] \backslash C_{1}$.
(b) Construct f_{2} by imitating this process of flattening out the middle third of each nonconstant segment of f_{1}. Specifically, set

$$
f_{2}(x)= \begin{cases}(1 / 2) f_{1}(3 x) & \text { for } 0 \leq x \leq 1 / 3 \\ f_{1}(x) & \text { for } 1 / 3<x<2 / 3 \\ (1 / 2) f_{1}(3 x-2)+1 / 2 & \text { for } 2 / 3 \leq x \leq 1\end{cases}
$$

If we continue this process, show that the resulting sequence $\left(f_{n}\right)$ converges uniformly on $[0,1]$.
(c) Let $f=\lim f_{n}$. Prove that f is a continuous, increasing function on $[0,1]$ with $f(0)=0$ and $f(1)=1$ that satisfies $f^{\prime}(x)=0$ for all x in the open set $[0,1] \backslash C$. Recall that the "length" of the Cantor set C is 0 . Somehow f manages to increase from 0 to 1 while remaining constant on a set of "length 1 ."

Solution.

(a)

We observe that f_{n} is constant on the open set $[0,1] \backslash C_{n}$ for all $n \in \mathbb{N}$.
(b) We will prove, by induction, that

$$
\left|f_{n}(x)-f_{n-1}(x)\right| \leq \frac{1}{2^{n}}
$$

for $x \in[0,1]$ and $n \in \mathbb{N}$. Notice that

$$
\left|f_{1}(x)-f_{0}(x)\right| \leq \frac{1}{2} \quad \text { and } \quad\left|f_{2}(x)-f_{1}(x)\right| \leq \frac{1}{2^{2}}
$$

for all $x \in[0,1]$. Assume, for some $k \geq 2$, that

$$
\left|f_{k}(x)-f_{k-1}(x)\right| \underset{1}{\leq} \frac{1}{2^{k}}, \quad x \in[0,1]
$$

Now consider the expression $\left|f_{k+1}(x)-f_{k}(x)\right|$. We will apply the three-part piecewise recursive definition of f_{n} to prove the induction step.
Case 1: If $0 \leq x \leq 1 / 3$, then

$$
\begin{aligned}
\left|f_{k+1}(x)-f_{k}(x)\right| & =\left|(1 / 2) f_{k}(3 x)-(1 / 2) f_{k-1}(3 x)\right| \\
& =\frac{1}{2} \cdot\left|f_{k}(3 x)-f_{k-1}(3 x)\right| \\
& \leq \frac{1}{2} \cdot \frac{1}{2^{k}}=\frac{1}{2^{k+1}}
\end{aligned}
$$

Case 2: If $1 / 3<x<2 / 3$, then

$$
\left|f_{k+1}(x)-f_{k}(x)\right|=\left|f_{k}(x)-f_{k-1}(x)\right|=0<\frac{1}{2^{k+1}}
$$

Case 3: If $2 / 3 \leq x \leq 1$, then

$$
\begin{aligned}
\left|f_{k+1}(x)-f_{k}(x)\right| & =\left|\left[(1 / 2) f_{k}(3 x-2)+1 / 2\right]-\left[(1 / 2) f_{k-1}(3 x-2)+1 / 2\right]\right| \\
& =\frac{1}{2} \cdot\left|f_{k}(3 x-2)-f_{k-1}(3 x-2)\right| \\
& \leq \frac{1}{2} \cdot \frac{1}{2^{k}}=\frac{1}{2^{k+1}}
\end{aligned}
$$

This proves, by induction, that

$$
\left|f_{n}(x)-f_{n-1}(x)\right| \leq \frac{1}{2^{n}}, \quad x \in[0,1]
$$

for all $n \in \mathbb{N}$.
Let $1 \leq m<n$. Then

$$
\begin{aligned}
& \left|f_{m}(x)-f_{n}(x)\right| \\
& =\left|\left(f_{m}(x)-f_{m+1}(x)\right)+\left(f_{m+1}(x)-f_{m+2}(x)\right)+\cdots+\left(f_{n-1}(x)-f_{n}(x)\right)\right| \\
& \leq\left|f_{m}(x)-f_{m+1}(x)\right|+\left|f_{m+1}(x)-f_{m+2}(x)\right|+\cdots+\left|f_{n-1}(x)-f_{n}(x)\right| \\
& \leq \frac{1}{2^{m+1}}+\frac{1}{2^{m+2}}+\cdots+\frac{1}{2^{n}} \\
& <\frac{1}{2^{m+1}}+\frac{1}{2^{m+2}}+\frac{1}{2^{m+3}}+\cdots \quad \text { (geometric series) } \\
& =\frac{1}{2^{m}} .
\end{aligned}
$$

Now, let $\epsilon>0$ be given. Choose $N \in \mathbb{N}$ such that $\frac{1}{2^{N}}<\epsilon$. If $n>m \geq N$, then by the previous calculation we have

$$
\left|f_{m}(x)-f_{n}(x)\right|<\frac{1}{2^{m}} \leq \frac{1}{2^{N}}<\epsilon
$$

By Cauchy's criterion for uniform convergence, the sequence $\left(f_{n}\right)$ of continuous functions converges uniformly to a limit function f.
(c) Because each f_{n} is continuous and $\left(f_{n}\right) \rightarrow f$ uniformly, if follows that f is continuous. Since $f_{n}(0)=0$ and $f_{n}(1)=1$ for all n, we have $f(0)=0$ and $f(1)=1$. Let $0 \leq x<y \leq 1$. Since each f_{n} is increasing, $f_{n}(x) \leq f_{n}(y)$. By the order limit
theorem $f(x) \leq f(y)$, and so f is increasing. Since f is constant on each of open intervals whose union form $[0,1] \backslash C$, it follows at $f^{\prime}(x)=0$ for $x \in[0,1] \backslash C$.

